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Existence of optima In sparse
matrix factorization and sparse
RelLU networks training
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Sparse matrix factorization
OBJECTIVES: Given A, find some sparse matrices X,,Z = 1,..., L, such that:

ArX..X;
APPLICATIONS: Accelerating matrix-vector multiplication, data analysis, etc.

Ax = X{(X,...(X;x)), Vx Y =DX, X sparse

a
ht

Fast Fourier Transformation Dictionary learning




RelLU neural networks and sparse ReLU neural networks

DEFINITIONS: Given weight matrices W) and bias vectors b’ ), =1,...,L

X W(L)a(...a(W(l)x + b(l)) +..)+ pHL)

o: R~ R : o(x) = max(0,x) is the ReLU activation function

Conventional Deep Neural Networks Sparse Deep Neural Networks
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The weight matrices are dense The weight matrices are sparse




Sparse matrix factorization formulation
OPTIMIZATION FORMULATIONS:

» k-sparse per row,
Choice of sparse matrices set &’ e k-sparse per column

» k-sparse in total

COMPLEXITY: Problem is NP-hard in general (Malik, IPL 2017), (S.Foucart, H. Rauhut, ANNA 2013)



Sparse RelLU neural networks (NNs) training

OPTIMIZATION FORMULATIONS:

Practical choice of sparse matrices set %j . k-sparse in total

(J. Frankle, M. Carbin, ICLR 2019), (S. Han, H. Mao, W-J. Dally, ICLR 2016)

COMPLEXITY: Not known yet.
Expected to be difficult since training classical ReLU NNs is NP-hard.

(R. Livni, S. Shalev-Shwartz, O. Shamir, NeuRIPS 2014), (D. Boob, S-S. Dey, G. Lan, Discrete Optimization 2022)

— How to deal with these problems?



Bixekl snppartematindatiomabtbion

SPECIAL CASE OF SPARSE MATRIX FACTORISATION

SPARSE MATRIX
FACTORISATION

L =2
(&, &,): set of matrices whose support are
included in I and J

FIXED SUPPORT
MATRIX
FACTORISATION




Fixed support matrix factorization (FSMF)
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Why Fixed Support Matrix Factgrization?

A

A =

LU decomposition
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Low rank approximation
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Butterfly matrix/factorization



Known results on (FSMF)

-For arbitrary (I, J), (FSMF) is NP-hard to solve.

&:L I e I i e e A

f There are instances (A, [, J) where (FSMF) has
| no optimal solution.

L’_l e — —— e = e e —— e —— e —— s —— e ————

-For certain structured (/, J), (FSMF) has a
polynomial algorithm.

-With the same family of structured (Z, J), loss
function of (FSMF) has no local minima.

(Q-T. Le, E. Riccietti, R. Gribonval, SIAM Journal of Matrix Analysis and Applications, 2023)

NP-hardness
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lll-posedness
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Existence of optimal solutions of FSMF

Low rank matrix approximation

LU decomposition

- Approximate a matrix A by a rank r matrix.

- Optimal solutions are given by computing
the truncated Singular Value Decomposition

for any matrix A.

(0 1), (1 0\ ,_ (1
°A_<1 o>’1_<1 1>’J_<o

* Infimum Is zero.

- A cannot be factorised into lower and

upper-triangular matrices.
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Similar phenomenon

ILL-POSEDNESS
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Tensor decomposition
(order at least three)

TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST
LOW-RANK APPROXIMATION PROBLEM

VIN DE SILVA* AND LEK-HENG LIMT

Matrix Completion

Low-Rank Matrix Approximation
with Weights or Missing Data is NP-hard

Nicolas Gillis! and Francois Glineur!

Robust Principle
Component Analysis

Matrix rigidity and the ill-posedness of
Robust PCA and matrix completion*

Jared Tanner' Andrew Thompson® Simon Vary'

(Classical) Neural
Network Training

Best k-Layer Neural Network Approximations

Lek-Heng Lim' . Mateusz Michatek?? . Yang Qi*




Existence of optimal solutions of FSMF (cont)

Similar assumption to (FSMF)
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Reformulation of (FSMF)

ORIGINAL
FORMULATION

l Change of variables l

NEW
FORMULATION

PROJECTION A ONTO THE SET gl,f



Equivalence: closedness - well-posedness
A NECESSARY AND SUFFICIENT CONDITION

THEOREM

mxn

(1,J) is well-posed if and only if &, ; is a closed set in the usual topology of

REMINDER:

A set X is closed if the limit of any convergent sequence of elements of X
is an element of X.



|

|

— _— —

Equivalence: closedness - well-posedness
PROOF
= If (1, J) is well-posed:

By contradiction, assume that %?f]’ 7 1s not closed.

By definition, there exists A & &, such that there is a sequence {B,,},cn, B, € & s.t.:
lim B, = A.

n— Qoo

— - — — eSS :B
—_— ——————— — . —_— = — _

e — —_—

Consider the (FSMF) with (A, 1, J):

. ————— _— — — =
e e ——— __ _J

-The infimum is zero (take the sequence {B,}, )
- The infimum is not attained (A & &, )

— e 8 ee o S o i} - 7 — . _ _—h

— — ——— — — — —— = = — =
e e ——————— = e —— e —— e e — ~ e — —_—



Equivalence: closedness - well-posedness

PROOF (CONT)
= If &, ,is closed:

= Since 0 € &, is closed, for any instance of (FSMF) with (A, 1, J), the infimum is at most
C = ||All7.

Ball centered at A

and radius ||A]]
min ||A — B||% where B € &, ,;nBA,|A|lr) / d
. ,

Important trick: &; ; N B(A,||A]| ) is compact (bounded and closed).

|A — -H% is a continuous function.



Conclusion

Given a support constraint (/, /), decide whether (/,J) is well-posed.

v L)

Given a support constraint (/, /), decide whether & ; is closed.
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An algorithm to decide the
closedness of & 1)
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Real algebraic geometry and its algorithm

SEMI-ALGEBRAIC SET

4
L) ixeR" [ Px)=0A \ Q,(x) >0}, .7 is finite
IES j=1

where P;, Q; ; are polynomials

EXAMPLE:

{(,y) | x*+y* =1} {(t,y,2) | x*—y*+ 72 =2} {6, y,2) | x* =y +e* =2}



&; ;7 1s a semi-algebraic set

THEOREM

For any (1,J), &, is a semi-algebraic set

REMINDER: &, := {XY' | supp(X) C I,supp(Y) C J}

How to find the set of polynomials describing &, ;?

PROJECTION THEOREM

Let X be semi-algebraic, Y = {y | dx, (x,y) € X} is also semi-algebraic




& ;s a semi-algebraic set (cont)

PROJECTION THEOREM

Let X be semi-algebraic, Y = {y | dx, (x,y) € X} is also semi-algebraic.

PROOF (THAT &, ,; IS SEMI-ALGEBRAIC):

Consider & := {(A, X, Y) [||||A — XYTHI% = 0 A supp(X) C I A supp(Y) C J}.
Therefore, & is semi-algebraic.

polynomial Xi,j =0,V(@,j) €1 Y,J =0,V(@,)) &€J

To conclude, projection of &f to the first term is & ; (because ||A — XYTH%D = A =XY")

— Theretfore, we can use tools from real algebraic geometry to decide the closedness of %L 7



Deciding the closedness of &

REMINDER: Given a set <, & is the set of limits of sequence of <.

Ei\E ;= {A|VX,VY,supp(X) CIASuUpp(Y) CJAJ|A-XY"||?>0)

ﬂ {A|Ve>0,3X,3Y,supp(X) CIASUpp(Y) CJA|IA-XY"||? <€)}

— Using (generalised) projection theorem, &7, &, ;, &, ,\ &, ; are semi-algebraic sets




Deciding the closedness of &/

& \E; ;= (A |VX,VY,supp(X) CIAsupp(Y) CJA|A—-XY"||?>0)

ﬂ {A|Ve>0,3X,3Y,supp(X) CIASUpp(Y) CJA|A-XY"||? <€)}

e Using quantifier elimination algorithm, we can decide the emptiness of the semi-
algebraic Set % i J\ % 1] (S. Basu, R. Pollack, M-F Roy, Algorithms in Real Algebraic Geometry)

e 1he complexity of the algorithm is O (4Ck), where:

O (is a universal constant.
O k=\mn|+2(|;|+|5]|)+1

/ T~

Size of the matrix product Size of the supports




Recap of the algorithm

-




How does the alg

Low rank approximation

J m=n=r

orithm work in practice?

=2

O ® ~ quantifiersElimination — -zsh — 80x24

(base) tung@®dhcp-67-169 quantifiersElimination % python fullsupport.py
Running time: 0.0036940574645996094
True

x m=n=3,r=72

® o =0 quantifiersElimination — -zsh — 80x24

Nl

(base) tung®dhcp-67-169 quantifiersElimination % python fullsupport.py
ACRunning time: 2112.0239312648773
None

LU

<----—-—---p»

O @ ~ quantifiersElimination — -zsh — 80x24

(base) tung@dhcp-67-169 quantifiersElimination % python LU2x2.py
Running time: ©0.013816118240356445
False

O O _ quantifiersElimination — -zsh — 80x24

-

(base) tung®dhcp-67-169 quantifiersElimination % python LU3x3.py
ACRunning time: 3202.279525756836
None



Perspectives

v/ Given support constraint (/,J), its well-posedness is decidable.

+/  The algorithm generalises easily to multi-factors (L > 2).

But,

X The complexity for the algorithm is doubly exponential.

X Using quantifier elimination algorithm (a general algorithm) does not provide
any insight properties of & ;.
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Fixed support sparse ReLU neural networks

Given data set ¥ := (X, Y), solve:

GENERAL




DEJAV
U: clo
sedness vs well-po
-posedness




Sufficient condition for well-posedness

THEOREM

For two-layer neural networks (L = 2) with output dimension equal to one, any
support constraint makes the training problem well-posed.

COROLLARY

For two-layer neural networks (L. = 2) with output dimension equal to one,
constraints &; := {X | [|X[|y < k;},j = 1,2 makes the training problem well-

posed.




Necessary condition for well-posedness

THEOREM
ort constraint (/,J), the well-

For two-layer neural networks (L = 2) with su .

posedness of training problem implies Jthe closedness of %L };
| - \ —— ——

this I1s decidable

THEOREM

For fixed support neural networks with support constraint/(/y, ..., I;), the well-
posedness of training problem implies the closedness of gh,.--JL'

|




Necessary condition for well-posedness

THEOREM

For two-layer neural networks (L = 2) with support constraint (/, J), the well-
posedness of training problem implies the closedness of %L 7-

The condition Is just necessary because when there is no constraint on the
support, the training problem is ill-posed for certain data set.

(L-H. Lim, M. Michalek, Y. Qi, Constructive Approximation 2019)



Contribution and future works

TAKE AWAY MESSAGE

*|ll-posedness of (FSMF) is decidable, not yet tractable.
ink between sparse matrix factorization and sparse RelLU neural networks.

POSSIBLE IMPROVEMENT?

* Better algorithms to decide the ill-posedness of (FSMF)
*\When the problem is well-posed, is there polynomial algorithm for (FSMF)
* A full characterization of ill-posedness of sparse RelLLU neural networks



https://arxiv.org/abs/2306.02666
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