Existence of optima in sparse matrix factorization and sparse ReLU networks training

Léon Zheng

Elisa Riccietti

Rémi Gribonval

Sparse matrix factorization

OBJECTIVES: Given A, find some sparse matrices $X_{\ell}, \ell=1, \ldots, L$, such that:

$$
A \approx X_{1} \ldots X_{L}
$$

APPLICATIONS: Accelerating matrix-vector multiplication, data analysis, etc.

$$
A x \approx X_{1}\left(X_{2} \ldots\left(X_{L} x\right)\right), \forall x
$$

Fast Fourier Transformation

$$
Y=D X, \quad X \text { sparse }
$$

Dictionary learning

ReLU neural networks and sparse ReLU neural networks

DEFINITIONS: Given weight matrices $W^{(\ell)}$ and bias vectors $b^{(\ell)}, \ell=1, \ldots, L$

$$
x \mapsto W^{(L)} \sigma\left(\ldots \sigma\left(W^{(1)} x+b^{(1)}\right)+\ldots\right)+b^{(L)}
$$

$\sigma: \mathbb{R} \mapsto \mathbb{R}: \sigma(x)=\max (0, x)$ is the ReLU activation function

Sparse matrix factorization formulation

OPTIMIZATION FORMULATIONS:

Given A and \mathscr{E}_{j} some sets of sparse matrices, solve:

$$
\min _{S^{(1)}, \ldots, S^{(j)}}\left\|A-\prod_{j=1}^{L} S^{(j)}\right\|_{F}^{2} \text { subject to: } S^{(j)} \in \mathscr{E}_{j}, \forall j \in\{1, \ldots, L\}
$$

Choice of sparse matrices set \mathscr{E}_{j}

- k-sparse per row,
- k-sparse per column
- k-sparse in total

Sparse ReLU neural networks (NNs) training

OPTIMIZATION FORMULATIONS:

Given data set $\mathscr{D}:=(X, Y)$ and \mathscr{E}_{j} some sets of sparse matrices, solve:

```
min
\(W^{(j)}, b^{(j)}\)
```

subject to:
$\left\|Y-W^{(L)} \sigma\left(\ldots \sigma\left(W^{(1)} X+b^{(1)}\right)+\ldots\right)+b^{(L)}\right\|_{F}^{2}$
$W^{(j)} \in \mathscr{E}_{j}, \forall j \in\{1, \ldots, L\}$

Practical choice of sparse matrices set $\mathscr{E}_{j}: k$-sparse in total
(J. Frankle, M. Carbin, ICLR 2019), (S. Han, H. Mao, W-J. Dally, ICLR 2016)

COMPLEXITY: Not known yet.
Expected to be difficult since training classical ReLU NNs is NP-hard.
(R. Livni, S. Shalev-Shwartz, O. Shamir, NeuRIPS 2014), (D. Boob, S-S. Dey, G. Lan, Discrete Optimization 2022)
\rightarrow How to deal with these problems?

Biaced tuppantemativixfatctrizatition

SPECIAL CASE OF SPARSE MATRIX FACTORISATION

SPARSE MATRIX FACTORISATION

1

$$
\min _{S^{(1)}, \ldots, S^{(J)}}\left\|A-\prod_{j=1}^{L} S^{(j)}\right\|_{F}^{2} \text { subject to: } S^{(j)} \in \mathscr{E}_{j}, \forall j \in\{1, \ldots, L\}
$$

- $L=2$
$\cdot\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right)$: set of matrices whose support are included in I and J

FIXED SUPPORT MATRIX FACTORISATION

$$
\min _{X, Y}\left\|A-X Y^{\top}\right\|_{F}^{2} \text { subject to: } \operatorname{supp}(X) \subseteq I, \operatorname{supp}(Y) \subseteq J
$$

Fixed support matrix factorization (FSMF)

$A \approx$

SUPPORT CONTRAINTS
inside support \square outside support

Why Fixed Support Matrix Factorization?

Low rank approximation

Hierarchical matrix

(a) $\mathbf{S}_{\mathrm{bf}}^{(4)}$

(b) $\mathbf{S}_{\mathrm{bf}}^{(3)}$

(c) $\mathbf{S}_{\mathrm{bf}}^{(2)}$

(d) $\mathbf{S}_{\mathrm{bf}}^{(1)}$

Butterfly matrix/factorization

Known results on (FSMF)

- For arbitrary (I, J), (FSMF) is NP-hard to solve.
- There are instances (A, I, J) where (FSMF) has no optimal solution.
- For certain structured (I, J), (FSMF) has a polynomial algorithm.

Tractability

-With the same family of structured (I, J), loss function of (FSMF) has no local minima.

Existence of optimal solutions of FSMF

Low rank matrix approximation

LU decomposition
$A=$

\times

$. A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), I=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$

- Infimum is zero.
- A cannot be factorised into lower and upper-triangular matrices.

Similar phenomenon

$\left.$	Tensor decomposition
(order at least three)	\quad
:---:	
LOW-RANK APPROXIMATION PROBLEM	
VIN DE SILVA* AND LEK-HENG LIM	\right\rvert\,

Existence of optimal solutions of FSMF (cont)

Given support constraints (I, J), is there a matrix A that makes (FSMF) have no optimal solution?

Given support constraints (I, J), is there a data set \mathscr{D} that makes the training sparse ReLU NNs have no optimal solutions?
$\min _{W^{(j)} b^{(j)}}$
$W^{(j)}, b^{(j)}$
subject to:
$\left\|Y-W^{(L)} \sigma\left(\ldots \sigma\left(W^{(1)} X+b^{(1)}\right)+\ldots\right)+b^{(L)}\right\|_{F}^{2}$
$W^{(j)} \in \mathscr{E}_{j}, \forall j \in\{1, \ldots, L\}$
\mathscr{E}_{j} : set of matrices whose support are fixed.

Origin of ill-posedness

Reformulation of (FSMF)

ORIGINAL FORMULATION
\downarrow

NEW
FORMULATION

$$
\min _{X, Y}\left\|A-X Y^{\top}\right\|_{F}^{2} \text { subject to: } \operatorname{supp}(X) \subseteq I, \operatorname{supp}(Y) \subseteq J
$$

Change of variables

$$
\min _{B \in \mathscr{C}_{I, J}}\|A-B\|_{F}^{2} \text { where } \mathscr{E}_{I, J}:=\left\{X Y^{\top} \mid \operatorname{supp}(X) \subseteq I, \operatorname{supp}(Y) \subseteq J\right\}
$$

PROJECTION A ONTO THE SET $\mathscr{E}_{I, J}$

Equivalence: closedness - well-posedness

A NECESSARY AND SUFFICIENT CONDITION

THEOREM

(I, J) is well-posed if and only if $\mathscr{E}_{I, J}$ is a closed set in the usual topology of $\mathbb{R}^{m \times n}$

REMINDER:

A set X is closed if the limit of any convergent sequence of elements of X is an element of X.

Equivalence: closedness - well-posedness PROOF

\Rightarrow If (I, J) is well-posed:
By contradiction, assume that $\mathscr{E}_{I, J}$ is not closed.
By definition, there exists $A \notin \mathscr{E}_{I, J}$ such that there is a sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}}, B_{n} \in \mathscr{E}_{I, J}$ s.t.:

$$
\lim _{n \rightarrow \infty} B_{n}=A
$$

Consider the (FSMF) with (A, I, J) :
-The infimum is zero (take the sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}}$)

- The infimum is not attained $\left(A \notin \mathscr{E}_{I, J}\right)$

Equivalence: closedness - well-posedness PROOF (CONT)
 \Rightarrow If $\mathscr{E}_{I, J}$ is closed:

\Rightarrow Since $0 \in \mathscr{E}_{I, J}$ is closed, for any instance of (FSMF) with (A, I, J), the infimum is at most $C=\|A\|_{F}^{2}$.
$\min _{B}\|A-B\|_{F}^{2}$ where $B \in \mathscr{E}_{I, J} \cap \mathbf{B}\left(A,\|A\|_{F}\right)$
Ball centered at A and radius $\|A\|_{F}$

Important trick: $\mathscr{E}_{I, J} \cap \mathbf{B}\left(A,\|A\|_{F}\right)$ is compact (bounded and closed).
$\|A-\cdot\|_{F}^{2}$ is a continuous function.

Conclusion

Given a support constraint (I, J), decide whether (I, J) is well-posed.

Given a support constraint (I, J), decide whether $\mathscr{E}_{I, J}$ is closed.

Real algebraic geometry and its algorithm

SEMI-ALGEBRAIC SET

$$
\bigcup_{i \in \mathscr{J}}\left\{x \in \mathbb{R}^{n} \mid P_{i}(x)=0 \wedge \bigwedge_{j=1}^{\ell} Q_{i, j}(x)>0\right\}, \mathscr{F} \text { is finite }
$$

where $P_{i}, Q_{i, j}$ are polynomials

EXAMPLE:

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

$$
\left\{(x, y, z) \mid x^{2}-y^{2}+z^{2}=2\right\}
$$

$$
\left\{(x, y, z) \mid x^{2}-y^{2}+e^{z}=2\right\}
$$

$\mathscr{E}_{I, J}$ is a semi-algebraic set

THEOREM

$$
\text { For any }(I, J), \mathscr{E}_{I, J} \text { is a semi-algebraic set }
$$

REMINDER: $\mathscr{E}_{I, J}:=\left\{X Y^{\top} \mid \operatorname{supp}(X) \subseteq I, \operatorname{supp}(Y) \subseteq J\right\}$

How to find the set of polynomials describing $\mathscr{E}_{I, J}$?

PROJECTION THEOREM

Let X be semi-algebraic, $Y=\{y \mid \exists x,(x, y) \in X\}$ is also semi-algebraic

$\mathscr{E}_{I, J}$ is a semi-algebraic set (cont)

PROJECTION THEOREM

Let X be semi-algebraic, $Y=\{y \mid \exists x,(x, y) \in X\}$ is also semi-algebraic.

PROOF (THAT $\mathscr{E}_{I, J}$ IS SEMI-ALGEBRAIC):

polynomial

$$
X_{i, j}=0, \forall(i, j) \notin I \quad Y_{i, j}=0, \forall(i, j) \notin J
$$

To conclude, projection of \mathscr{A} to the first term is $\mathscr{E}_{I, J}$ (because $\left\|A-X Y^{\top}\right\|_{F}^{2} \Rightarrow A=X Y^{\top}$)
\rightarrow Therefore, we can use tools from real algebraic geometry to decide the closedness of $\mathscr{E}_{I, J}$

Deciding the closedness of $\mathscr{E}_{I, J}$

$\mathscr{E}_{I, J}$ is a closed set if and only if $\overline{\mathscr{E}_{I, J}} \backslash \mathscr{E}_{I, J}$ is empty

REMINDER: Given a set $\mathscr{A}, \overline{\mathscr{A}}$ is the set of limits of sequence of \mathscr{A}.

$$
\overline{\mathscr{E}_{I, J}} \mid \mathscr{E}_{I, J}=\quad\left\{A \mid \forall X, \forall Y, \operatorname{supp}(X) \subseteq I \wedge \operatorname{supp}(Y) \subseteq J \wedge\left\|A-X Y^{\top}\right\|^{2}>0\right\} \quad \mathscr{E}_{I, J}^{C}
$$

$$
\bigcap\left\{A \mid \forall \epsilon>0, \exists X, \exists Y, \operatorname{supp}(X) \subseteq I \wedge \operatorname{supp}(Y) \subseteq J \wedge\left\|A-X Y^{\top}\right\|^{2}<\epsilon\right\}
$$

\rightarrow Using (generalised) projection theorem, $\mathscr{E}_{I, J}^{C}, \overline{\mathscr{E}_{I, J}}, \overline{\mathscr{E}_{I, J}} \backslash \mathscr{E}_{I, J}$ are semi-algebraic sets

Deciding the closedness of $\mathscr{E}_{I, J}$

$$
\begin{aligned}
& \overline{\mathscr{E}_{I, J}} \backslash \mathscr{E}_{I, J}=\left\{A \mid \forall X, \forall Y, \operatorname{supp}(X) \subseteq I \wedge \operatorname{supp}(Y) \subseteq J \wedge\left\|A-X Y^{\top}\right\|^{2}>0\right\} \\
& \bigcap\left\{A \mid \forall \epsilon>0, \exists X, \exists Y, \operatorname{supp}(X) \subseteq I \wedge \operatorname{supp}(Y) \subseteq J \wedge\left\|A-X Y^{\top}\right\|^{2}<\epsilon\right\}
\end{aligned}
$$

- Using quantifier elimination algorithm, we can decide the emptiness of the semialgebraic set $\overline{\mathscr{E}}_{I, J} \backslash \mathscr{E}_{I, J}$.
(S. Basu, R. Pollack, M-F Roy, Algorithms in Real Algebraic Geometry)
- The complexity of the algorithm is $O\left(4^{C^{k}}\right)$, where:
${ }^{\circ} C$ is a universal constant.

$\circ k=\sqrt{m n}+2(\underbrace{\left|I_{1}\right|+\left|I_{2}\right|})+1$
Size of the matrix product
Size of the supports

Recap of the algorithm

$$
\begin{aligned}
& \overline{\mathscr{E}_{I, J}} \mathscr{E}_{I, J} \\
& \text { is empty? }
\end{aligned}
$$

How does the algorithm work in practice?

Low rank approximation

$$
m=n=r=2
$$

- quantifiersElimination - -zsh -80×24
[(base) tung@dhcp-67-169 quantifiersElimination \% python fullsupport.py Running time: 0.0036940574645996094
True
N $m=n=3, r=2$
- quantifiersElimination - -zsh -80×24
[(base) tung@dhcp-67-169 quantifiersElimination \% python fullsupport.py ${ }^{\wedge}$ CRunning time: 2112.0239312648773 None

LU decomposition

Perspectives

Given support constraint (I, J), its well-posedness is decidable.
The algorithm generalises easily to multi-factors ($L>2$).

But,
The complexity for the algorithm is doubly exponential.
Using quantifier elimination algorithm (a general algorithm) does not provide any insight properties of $\mathscr{E}_{I, J}$.

Well-posedness of sparse ReLU neural networks

Fixed support sparse ReLU neural networks

Given data set $\mathscr{D}:=(X, Y)$, solve:

DÉJÀ VU: closedness vs well-posedness

Given a support constraint $\left(I_{1}, \ldots, I_{L}\right)$, is the training problem well-posed (i.e., for all data set \mathscr{D}, optimal solutions always exist)?

The support constraint $\left(I_{1}, \ldots, I_{L}\right)$ make training problem well-posed if and only if for all input sets X, the image $W^{(L)} \sigma\left(\ldots \sigma\left(W^{(1)} X+b^{(1)}\right)+\ldots\right)+b^{(L)}$ is closed.

Sufficient condition for well-posedness

THEOREM

For two-layer neural networks ($L=2$) with output dimension equal to one, any support constraint makes the training problem well-posed.

COROLLARY

For two-layer neural networks $(L=2)$ with output dimension equal to one, constraints $\mathscr{E}_{j}:=\left\{X \mid\|X\|_{0} \leq k_{j}\right\}, j=1,2$ makes the training problem wellposed.

Necessary condition for well-posedness

THEOREM

For two-layer neural networks $(L=2)$ with support constraint (I, J), the wellposedness of training problem implies the closedness of $\mathscr{E}_{I, J}$.
this is decidable

THEOREM

For fixed support neural networks with support constraint $/\left(I_{1}, \ldots, I_{L}\right)$, the wellposedness of training problem implies the closedness of $\mathscr{E}_{I_{1}, \ldots, I_{L}}$.

Necessary condition for well-posedness

THEOREM

For two-layer neural networks $(L=2)$ with support constraint (I, J), the wellposedness of training problem implies the closedness of $\mathscr{E}_{I, J}$.

The condition is just necessary because when there is no constraint on the support, the training problem is ill-posed for certain data set.

Contribution and future works

TAKE AWAY MESSAGE

- III-posedness of (FSMF) is decidable, not yet tractable.
- Link between sparse matrix factorization and sparse ReLU neural networks.

POSSIBLE IMPROVEMENT?

- Better algorithms to decide the ill-posedness of (FSMF)
-When the problem is well-posed, is there polynomial algorithm for (FSMF)
-A full characterization of ill-posedness of sparse ReLU neural networks
https://arxiv.org/abs/2306.02666
THANK YOU

