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Sparse matrix factorization

Fast Fourier Transformation

APPLICATIONS:

OBJECTIVES: Given , find some sparse matrices , such that:A Xℓ, ℓ = 1,…, L

A ≈ X1…XL

Accelerating matrix-vector multiplication, data analysis, etc.

Ax ≈ X1(X2…(XLx)), ∀x

Dictionary learning

Y = DX, X sparse



ReLU neural networks and sparse ReLU neural networks

The weight matrices are dense The weight matrices are sparse

Sparse Deep Neural NetworksConventional Deep Neural Networks

DEFINITIONS: Given weight matrices  and bias vectors  W(ℓ) b(ℓ), ℓ = 1,…, L

x ↦ W(L)σ(…σ(W(1)x + b(1)) + …) + b(L)

 is the ReLU activation functionσ : ℝ ↦ ℝ : σ(x) = max(0,x)



Sparse matrix factorization formulation

min
S(1),…,S(J)

∥A −
L

∏
j=1

S( j)∥2
F  subject to:  S( j) ∈ ℰj, ∀j ∈ {1,…, L}

Given  and  some sets of sparse matrices, solve:A ℰj

• -sparse per row, 

• -sparse per column

• -sparse in total

k
k
k

OPTIMIZATION FORMULATIONS:

Choice of sparse matrices set  ℰj

COMPLEXITY: Problem is NP-hard in general (Malik, IPL 2017), (S.Foucart, H. Rauhut, ANNA 2013)



Sparse ReLU neural networks (NNs) training
OPTIMIZATION FORMULATIONS:

min
W( j),b( j)

∥Y − W(L)σ(…σ(W(1)X + b(1)) + …) + b(L)∥2
F

 subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, L}

Given data set  and  some sets of sparse matrices, solve:𝒟 := (X, Y) ℰj

Practical choice of sparse matrices set  : -sparse in total ℰj k
(J. Frankle, M. Carbin, ICLR 2019), (S. Han, H. Mao, W-J. Dally, ICLR 2016)

COMPLEXITY: Not known yet. 
Expected to be difficult since training classical ReLU NNs is NP-hard.

(R. Livni, S. Shalev-Shwartz, O. Shamir, NeuRIPS 2014), (D. Boob, S-S. Dey, G. Lan, Discrete Optimization 2022)

 How to deal with these problems?→



Fixed support matrix factorization
SPECIAL CASE OF SPARSE MATRIX FACTORISATION

min
S(1),…,S(J)

∥A −
L

∏
j=1

S( j)∥2
F  subject to:  S( j) ∈ ℰj, ∀j ∈ {1,…, L}

min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ J

SPARSE MATRIX 
FACTORISATION

FIXED SUPPORT 
MATRIX 

FACTORISATION

• 

• : set of matrices whose support are 
included in  and 

L = 2
(ℰ1, ℰ2)

I J

Back to sparse matrix factorization



Fixed support matrix factorization (FSMF)

min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ J

SUPPORT CONTRAINTS



Why Fixed Support Matrix Factorization?

A = ⇥ A = ⇥ r

r

LU decomposition Low rank approximation

Hierarchical matrix Butterfly matrix/factorization



Known results on (FSMF)
•For arbitrary , (FSMF) is NP-hard to solve.(I, J)

(Q-T. Le, E. Riccietti, R. Gribonval, SIAM Journal of Matrix Analysis and Applications, 2023)

NP-hardness

•There are instances  where (FSMF) has 
no optimal solution.

(A, I, J) Ill-posedness

•For certain structured , (FSMF) has a 
polynomial algorithm.

(I, J)
Tractability

•With the same family of structured , loss 
function of (FSMF) has no local minima.

(I, J)
Benign landscape



Existence of optimal solutions of FSMF
Low rank matrix approximation LU decomposition

A = ⇥
A = ⇥ r

r

• Approximate a matrix  by a rank  matrix.


• Optimal solutions are given by computing 
the truncated Singular Value Decomposition 
for any matrix .

A r

A

• 


• Infimum is zero.


•  cannot be factorised into lower and 
upper-triangular matrices.

A = (0 1
1 0), I = (1 0

1 1), J = (1 1
0 1)

A

WELL-POSED ILL-POSED



Tensor decomposition 
(order at least three)

Matrix Completion

Robust Principle 
Component Analysis 

(Classical) Neural 
Network Training

Similar phenomenon



Existence of optimal solutions of FSMF (cont)

Given support constraints , is there a matrix  that makes (FSMF) have no optimal solution? (I, J) A

Given support constraints , is there a data set  that makes the training sparse 
ReLU NNs have no optimal solutions?

(I, J) 𝒟

min
W( j),b( j)

∥Y − W(L)σ(…σ(W(1)X + b(1)) + …) + b(L)∥2
F

 subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, L}

: set of matrices whose 
support are fixed.
ℰj

Similar assumption to (FSMF)



Origin of ill-posedness



Reformulation of (FSMF)

min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ JORIGINAL 

FORMULATION

min
B∈ℰI,J

∥A − B∥2
F  where ℰI,J := {XY⊤ ∣ supp(X) ⊆ I, supp(Y) ⊆ J}NEW 

FORMULATION

Change of variables

PROJECTION  ONTO THE SET A ℰI,J



Equivalence: closedness - well-posedness 
A NECESSARY AND SUFFICIENT CONDITION

THEOREM 

 is well-posed if and only if  is a closed set in the usual topology of (I, J) ℰI,J ℝm×n

REMINDER:

A set  is closed if the limit of any convergent sequence of elements of   
is an element of .

X X
X



Equivalence: closedness - well-posedness 
PROOF

 If  is well-posed:⇒ (I, J)

By contradiction, assume that  is not closed.ℰI,J

By definition, there exists  such that there is a sequence  s.t.:
.

A ∉ ℰI,J {Bn}n∈ℕ, Bn ∈ ℰI,J
lim
n→∞

Bn = A

Consider the (FSMF) with :(A, I, J)

•The infimum is zero (take the sequence )

•The infimum is not attained ( )

{Bn}n∈ℕ
A ∉ ℰI,J



Equivalence: closedness - well-posedness 
PROOF (CONT)

 If  is closed:⇒ ℰI,J

 Since  is closed, for any instance of (FSMF) with , the infimum is at most 
.

⇒ 0 ∈ ℰI,J (A, I, J)
C = ∥A∥2

F

min
B

∥A − B∥2
F  where B ∈ ℰI,J ∩ B(A,∥A∥F)

Ball centered at  
and radius 

A
∥A∥F

Important trick:  is compact (bounded and closed).ℰI,J ∩ B(A,∥A∥F)
 is a continuous function.∥A − ⋅∥2

F



Conclusion

Given a support constraint , decide whether  is well-posed.(I, J) (I, J)

Given a support constraint , decide whether  is closed.(I, J) ℰI,J



An algorithm to decide the 
closedness of ℰI,J



Real algebraic geometry and its algorithm
SEMI-ALGEBRAIC SET

⋃
i∈ℐ

{x ∈ ℝn ∣ Pi(x) = 0 ∧
ℓ

⋀
j=1

Qi,j(x) > 0}, ℐ is finite

where  are polynomials Pi, Qi,j

EXAMPLE:

{(x, y) ∣ x2 + y2 = 1} {(x, y, z) ∣ x2 − y2 + z2 = 2} {(x, y, z) ∣ x2 − y2 + ez = 2}



 is a semi-algebraic setℰI,J

THEOREM

For any ,   is a semi-algebraic set(I, J) ℰI,J

REMINDER: ℰI,J := {XY⊤ ∣ supp(X) ⊆ I, supp(Y) ⊆ J}

How to find the set of polynomials describing ? ℰI,J

PROJECTION THEOREM

Let  be semi-algebraic,  is also semi-algebraicX Y = {y ∣ ∃x, (x, y) ∈ X}



 is a semi-algebraic set (cont)ℰI,J

PROJECTION THEOREM

Let  be semi-algebraic,  is also semi-algebraic.X Y = {y ∣ ∃x, (x, y) ∈ X}

PROOF (THAT  IS SEMI-ALGEBRAIC):ℰI,J

Consider .𝒜 := {(A, X, Y) ∣ ∥A − XY⊤∥2
F = 0 ∧ supp(X) ⊆ I ∧ supp(Y) ⊆ J}

polynomial Xi,j = 0,∀(i, j) ∉ I Yi,j = 0,∀(i, j) ∉ J
Therefore,  is semi-algebraic.𝒜

To conclude, projection of  to the first term is  (because )𝒜 ℰI,J ∥A − XY⊤∥2
F ⇒ A = XY⊤

 Therefore, we can use tools from real algebraic geometry to decide the closedness of  → ℰI,J



Deciding the closedness of ℰI,J

  is a closed set if and only if  is emptyℰI,J ℰI,J∖ℰI,J

REMINDER: Given a set ,  is the set of limits of sequence of .𝒜 𝒜 𝒜

{A ∣ ∀X, ∀Y, supp(X) ⊆ I ∧ supp(Y) ⊆ J ∧ ∥A − XY⊤∥2 > 0}

⋂{A ∣ ∀ϵ > 0,∃X, ∃Y, supp(X) ⊆ I ∧ supp(Y) ⊆ J ∧ ∥A − XY⊤∥2 < ϵ}

ℰI,J∖ℰI,J = ℰC
I,J

ℰI,J

 Using (generalised) projection theorem,  are semi-algebraic sets → ℰC
I,J, ℰI,J, ℰI,J∖ℰI,J



Deciding the closedness of ℰI,J

{A ∣ ∀X, ∀Y, supp(X) ⊆ I ∧ supp(Y) ⊆ J ∧ ∥A − XY⊤∥2 > 0}

⋂{A ∣ ∀ϵ > 0,∃X, ∃Y, supp(X) ⊆ I ∧ supp(Y) ⊆ J ∧ ∥A − XY⊤∥2 < ϵ}

ℰI,J∖ℰI,J =

• Using quantifier elimination algorithm, we can decide the emptiness of the semi-
algebraic set .


• The complexity of the algorithm is , where:

ℰI,J∖ℰI,J

O (4Ck)
(S. Basu, R. Pollack, M-F Roy, Algorithms in Real Algebraic Geometry)

 is a universal constant.
C
k = mn + 2( | I1 | + | I2 | ) + 1

Size of the matrix product Size of the supports



Recap of the algorithm

 is 
closed?
ℰI,J  

is empty?
ℰI,J∖ℰI,J is 

well-posed?
(I, J)



How does the algorithm work in practice?

A = ⇥

r
m

n

A = ⇥

n

n n

m = n = r = 2

m = n = 3,r = 2

n = 2

n = 3

Low rank approximation

LU decomposition



Perspectives
Given support constraint , its well-posedness is decidable.(I, J)

But,

The complexity for the algorithm is doubly exponential.

Using quantifier elimination algorithm (a general algorithm) does not provide 
any insight properties of .ℰI,J

The algorithm generalises easily to multi-factors ( ).L > 2



Well-posedness of sparse ReLU 
neural networks



Fixed support sparse ReLU neural networks

min
W( j),b( j)

∥Y − W(L)σ(…σ(W(1)X + b(1)) + …) + b(L)∥2
F

 subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, L}

Given data set , solve:𝒟 := (X, Y)

min
W( j),b( j)

∥Y − W(L)σ(…σ(W(1)X + b(1)) + …) + b(L)∥2
F

 subject to:  supp(W( j)) ∈ Ij, ∀j ∈ {1,…, L}

GENERAL

FIXED SUPPORT



DÉJÀ VU: closedness vs well-posedness

Given a support constraint , is the training problem well-posed (i.e., for all 
data set , optimal solutions always exist)?

(I1, …, IL)
𝒟

The support constraint  make training problem well-posed if and only if for all input sets , the 
image  is closed.

(I1, …, IL) X
W(L)σ(…σ(W(1)X + b(1)) + …) + b(L)



Sufficient condition for well-posedness

For two-layer neural networks ( ) with output dimension equal to one, any 
support constraint makes the training problem well-posed.

L = 2

THEOREM 

For two-layer neural networks ( ) with output dimension equal to one, 
constraints  makes the training problem well-
posed.

L = 2
ℰj := {X ∣ ∥X∥0 ≤ kj}, j = 1,2

COROLLARY 



Necessary condition for well-posedness
THEOREM 

For two-layer neural networks ( ) with support constraint , the well-
posedness of training problem implies the closedness of .

L = 2 (I, J)
ℰI,J

this is decidable

THEOREM 

For fixed support neural networks with support constraint , the well-
posedness of training problem implies the closedness of .

(I1, …, IL)
ℰI1,…,IL



Necessary condition for well-posedness
THEOREM 

For two-layer neural networks ( ) with support constraint , the well-
posedness of training problem implies the closedness of .

L = 2 (I, J)
ℰI,J

The condition is just necessary because when there is no constraint on the 
support, the training problem is ill-posed for certain data set.

(L-H. Lim, M. Michalek, Y. Qi, Constructive Approximation 2019)



Contribution and future works

•Better algorithms to decide the ill-posedness of (FSMF)

•When the problem is well-posed, is there polynomial algorithm for (FSMF)

•A full characterization of ill-posedness of sparse ReLU neural networks

TAKE AWAY MESSAGE
• Ill-posedness of (FSMF) is decidable, not yet tractable.

•Link between sparse matrix factorization and sparse ReLU neural networks.

POSSIBLE IMPROVEMENT?



THANK YOU
https://arxiv.org/abs/2306.02666


