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Sparse matrix factorization

Objective: Given A, find multiple factors S (1), S (2), . . . ,S (J) such that:

A ≈ S (1)S (2) . . . S (J)

where S (i) are sparse matrices.

Motivations
Fast matrix vector products:

A︸︷︷︸
dense

≈ S (1)S (2) . . . S (J)︸ ︷︷ ︸
sparse

⇒ Ax ≈ S (1)(S (2)(. . . (S (J)x)))

Reduce time + memory complexity
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Applications

Fast Fourier Transform, Fast Hadamard Transform, etc.

Dictionary learning
A = XY>, A data, X a base (words in a dictionary), Y representation
of each sample using the dictionary.

[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]

Sparse (linear) neural networks:
Interpretability.
Energy efficiency.

[T. Dao & all. Learning fast algorithms for linear transforms using butterfly factorizations, PMLR, 2019]
[B. Chen & all. Pixelated butterfly: Simple and efficient sparse training for neural network models, PMLR, 2022]
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A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given A and Ej some sets of sparse matrices, solve:

min
S(1),...,S(J)

‖A−
J∏

j=1

S (j)‖2F subject to: S (j) ∈ Ej , ∀j ∈ {1, . . . , J}

Example of sparsity patterns Ej : set of matrices with at most k nonzero
entries per row, per column or in total.

Known to be NP-hard (covers sparse PCA, sparse dictionary learning)
[Malik, NP-hardness and inapproximability of sparse PCA, IPL, 2017]
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]

→ A challenging problem, how to deal with it?
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Our approach: from two to multiple factors

Two factors matrix factorization: the simplest nontrivial case.

Given A, minimize
X ,Y

‖A− XY>‖2F subject to: X ,Y sparse matrices

Multiple factors matrix factorization: butterfly factorization.
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Two sub-problems of two factors matrix factorization

Minimize
X ,Y

‖A− XY>‖2F subject to: X ,Y sparse matrices

1) Support identification

Find two sets SX ,SY - the supports of two factors X ,Y
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→ Second problem: Fixed support matrix factorization (FSMF).
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Examples of FSMF
FSMF covers:

Low rank matrix decomposition

A = × r

r

LU decomposition

A = ×

Hierarchical H matrices

Butterfly factorization (multiple factors)

9 / 31



FSMF: further motivation

Understand the asymptotic behaviour of other existing heuristics:
Supports asymptotically don’t change
Spurious local valley in the landscape of L(X ,Y ): certain heuristic can
lead to iterates diverging to infinity

Measure of the difference between two consecutive supports

[L. Le Magoarou and R. Gribonval, Chasing butterflies: In search of efficient dictionaries, ICASSP, 2015]
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Main contributions on FSMF

1 Is the problem polynomially tractable?
→ We prove its NP-hardness.

2 Does the problem have a solution?
→ We show an instance where optimal solutions do not exist.

3 Are there easy instances?
→ We individuate a family of polynomially solvable instances and
proposed an efficient algorithm.

4 How well does gradient descent tackle the problem of FSMF?
→ We study the properties of the landscape of the function
L(X ,Y ) = ‖A− XY>‖2 under the support constraints.
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NP-hardness

Theorem (1)
Sparse matrix factorization is NP-hard even with fixed support

Proof.
Rank-one matrix completion with noise is reducible to FSMF.

In line with recent results on matrix factorization:
non-negative matrix factorization (NMF)
weighted low rank
matrix completion

[N. Gillis, F. Glineur, Low-rank matrix approximation with weights or missing data is NP-hard. SIAM JMAA, 2010]

[S. A. Vavasis, On the complexity of nonnegative matrix factorization, SIOPT, 2010]
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LU decomposition and non-closedness

A = ×

Fact: Any square matrix is the limit of a sequence of matrices having
an LU decomposition.
But there exist square matrices that do not have an exact LU
decomposition.
[H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press]

−→ The set of matrices having LU decomposition is not closed
−→ For certain support constraints (SX ,SY ) and matrices A, (FSMF) does
not have an optimal solution.
Question : Given (SX ,SY ), do their FSMF instances always have optimal
solutions? → This problem is decidable (not known to be tractable yet).
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Polynomially solvable instances

Example (Unconstrained matrix factorization)
When there is no constraints on the support of X and Y :

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2F

A = × r

r

→ Solution: Use Singular Value Decomposition (SVD).
→ Question: Can Singular Value Decomposition (SVD) still work in the
constrained case?

17 / 31



Polynomially solvable instances

Example (Unconstrained matrix factorization)
When there is no constraints on the support of X and Y :

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2F

A = × r

r

→ Solution: Use Singular Value Decomposition (SVD).

→ Question: Can Singular Value Decomposition (SVD) still work in the
constrained case?

17 / 31



Polynomially solvable instances

Example (Unconstrained matrix factorization)
When there is no constraints on the support of X and Y :

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2F

A = × r

r

→ Solution: Use Singular Value Decomposition (SVD).
→ Question: Can Singular Value Decomposition (SVD) still work in the
constrained case?

17 / 31



SVD as a greedy algorithm

1) Decompose the problem:

A− XY> = A−
r∑

i=1

xiy
>
i = A−

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

2) Finding the SVD:

bestRankOneApprox(A) → M1

bestRankOneApprox(A−M1) → M2

· · ·
bestRankOneApprox(A−M1 . . .−Mr−1) → Mr

→ SVD is a greedy algorithm in disguise

Algorithm 1 Algorithm for unconstrained matrix factorization

1: for i ∈ {1, . . . , r} do
2: Mi := best rank-one approximation of A−

∑i−1
k=1 Mk .

3: end for
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SVD as a greedy algorithm: the constrained case

How to generalize the greedy algorithm?

Decompose XY>:

XY> =
r∑

i=1

xiy
>
i =

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

Finding optimal solution (X ,Y ) � Finding optimal the rank-one
constrained supports.
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Algorithm 2 Algorithm for fixed-support matrix factorization

1: for i ∈ {1, . . . , r} do
2: Si ← i-th rank-one support
3: Mi := best rank-one approximation of (A−

∑i−1
k=1 Mk)� Si

4: end for

Example: A M1 M2 M3

+ +≈
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Polynomial solvability characterized by rank-one supports

The output of the greedy algorithm will always satisfy the constraints
Is the output an optimal solution? Not always

Theorem (2)
If the rank-one supports are pairwise disjoint or identical, then the greedy
algorithm gives an optimal solution.

For the same result with a weaker assumption:
[QT. Le, E. Riccietti, R. Gribonval, Spurious Valleys, NP-hardness, and Tractability of Sparse Matrix Factorization

With Fixed Support, SIAM Journal of Matrix Analysis and Applications, In press, 2022.]
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Multiple-factors cases: the butterfly factorization

A special case: the butterfly factorization
Approximate any matrix by a product of J ≥ 2 butterfly factors

Let A := X(4)X(3)X(2)X(1) such that:

It is expressive: the composition of matrices with a butterfly structure
can accurately approximate any given matrix
In neural networks faster training and inference time without harming
the performance

[T. Dao & all. Kaleidoscope: An efficient, learnable representation for all structured linear maps, ICLR, 2020]
[B. Chen & all. Pixelated butterfly: Simple and efficient sparse training for neural network models, PMLR, 2022]
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Butterfly factorization: theoretical guarantees

Hierarchical approach:Use our algorithm to recover the partial factors: solve
a sequence of two factors problems, if the supports are known

Left-to-right tree
Balanced tree

Theorem (3)

If E ∗ is best error approximation of A ∈ RN×N , the solution of the
hierarchical algorithm yields a distance/error E such that:

Any tree: E ≤ (N/2− 1)× E ∗.
Left-to-right (or right-to-left) tree: E ≤ Nc × E ∗ where c = log4 3 < 1.

24 / 31



Butterfly factorization: theoretical guarantees

Hierarchical approach:Use our algorithm to recover the partial factors: solve
a sequence of two factors problems, if the supports are known

Left-to-right tree
Balanced tree

Theorem (3)

If E ∗ is best error approximation of A ∈ RN×N , the solution of the
hierarchical algorithm yields a distance/error E such that:

Any tree: E ≤ (N/2− 1)× E ∗.
Left-to-right (or right-to-left) tree: E ≤ Nc × E ∗ where c = log4 3 < 1.

24 / 31



1 Introduction

2 NP-hardness

3 Existence of optimal solutions

4 A polynomial algorithm for easy instances

5 Multiple factors matrix factorization

6 Back to two factors: Optimization landscape

25 / 31



Study of the landscape of the loss function

L(X ,Y ) = ‖A−XY T‖2F

Has been studied for:
linear and shallows neural networks
matrix sensing, phase retrieval, matrix completion ...

[Q. Li, Z. Zhu, G. Tang, The non-convex geometry of low-rank matrix optimization, Information and Inference, 2018]
[Z. Zhu & all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
[ L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes,
JMLR, 2019]

Never with support constraints!
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Undesirable spurious objects

Example of undesirable spurious objects :
Spurious local minima: local minima (but not global minima)
Spurious local valleys: less known but equally troublesome

[ L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes,
JMLR, 2019]

Example of spurious local minimum and spurious local valley. Two undesirable
objects: may make the convergence of iterative methods difficult

27 / 31



Landscape of full support matrix factorization

With unconstrained (full support) matrix factorization:

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2

The landscape of L(X ,Y ) is benign:
No spurious local minima.1

No spurious local valleys 2

→ Are there other instances similar to full support matrix factorization ?

1 [Z. Zhu & all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
2 [ L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization

landscapes, JMLR, 2019]
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Landscape of L(X ,Y ) under sparsity constraints

Reminder : Fixed support matrix factorization

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2

Subject to: supp(X ) ⊆ SX

supp(Y ) ⊆ SY

Theorem (4)
If (SX , SY ) satisfy the condition of polynomial solvability in Theorem (2),
then for all A, the landscape of L(X ,Y ) does not contain any spurious local
minimum and spurious local valley.
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Conclusions

Take home message

For Fixed support matrix factorization (FSMF), we have:
1) It is NP-hard to solve
2) Easy instances with effective direct algorithm exists, competitive

with gradient descent.
3) Those easy instances have benign landscape
4) Multiple factors can be dealt with by a hierarchical approach.

On-going works/perspectives

Study the closedness of the set of solutions to FSMF.
Can we enlarge the family of tractable instances of FSMF?
Can we improve the approximate factor in the case of butterfly
factorization?
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Available: an implementation of the algorithm in C++ via Python and
Matlab wrappers FAµST toolbox at https://faust.inria.fr/.

To know more:

Q.-T. Le, E. Riccietti, and R. Gribonval (2022), Spurious Valleys, Spurious Minima
and NP-hardness of Sparse Matrix Factorization With Fixed Support, arXiv preprint,
arXiv:2112.00386.

L. Zheng, E. Riccietti, and R. Gribonval (2022), Efficient Identification of Butterfly
Sparse Matrix Factorizations, arXiv preprint, arXiv:2110.01235.

Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval (2022), Fast learning of fast
transforms, with guarantees, ICASSP 2022
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Definition: spurious local valleys

Definition (Spurious local valley - Informal)

S ∈ Rd is a spurious local valley if for all x ∈ S , there does not exist any
continuous path connecting x and a global minimum x∗ without increasing
the loss function f .
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Numerical results: 2 factors

A the Hadamard matrix of size 2J × 2J , J = 10, two different supports
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Numerical results: J factors

Approximation of the DFT matrix by a product of J = 9 butterfly factors.

Faster and more accurate in the
noiseless setting

Ours

Gradient-based

Also more robust in the
noisy setting

Ours

Gradient-based
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