Sparse Matrix Factorization from an Optimization Point of View

Quoc Tung Le Léon Zheng Elisa Riccietti Rémi Gribonval

Université de Lyon, Ecole Normale Supérieure de Lyon
INRIA, CNRS, Laboratoire de l'Informatique du Parallélisme - LIP

Cincia 䅇 \equiv = dip
LIP PhD, Seminar
25nd May 2023

Joint work with

(1) Introduction
(2) NP-hardness
(3) Existence of optimal solutions
(4) A polynomial algorithm for easy instances
(5) Multiple factors matrix factorization
(6) Back to two factors: Optimization landscape

Sparse matrix factorization

Objective: Given A, find multiple factors $S^{(1)}, S^{(2)}, \ldots, S^{(J)}$ such that:

$$
A \approx S^{(1)} S^{(2)} \ldots S^{(J)}
$$

where $S^{(i)}$ are sparse matrices.

Sparse matrix factorization

Objective: Given A, find multiple factors $S^{(1)}, S^{(2)}, \ldots, S^{(J)}$ such that:

$$
A \approx S^{(1)} S^{(2)} \ldots S^{(J)}
$$

where $S^{(i)}$ are sparse matrices.

Motivations

- Fast matrix vector products:

$$
\underbrace{A}_{\text {dense }} \approx \underbrace{S^{(1)} S^{(2)} \ldots S^{(J)}}_{\text {sparse }} \Rightarrow A x \approx S^{(1)}\left(S^{(2)}\left(\ldots\left(S^{(J)} x\right)\right)\right)
$$

- Reduce time + memory complexity

Applications

- Fast Fourier Transform, Fast Hadamard Transform, etc.

- Dictionary learning
- $A=X Y^{\top}, A$ data, X a base (words in a dictionary), Y representation of each sample using the dictionary.
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]
- Sparse (linear) neural networks:
- Interpretability.
- Energy efficiency.
[T. Dao \& all. Learning fast algorithms for linear transforms using butterfly factorizations, PMLR, 2019]
[B. Chen \& all. Pixelated butterfly: Simple and efficient sparse training for neural network models, PMLR, 2022]

A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given A and \mathcal{E}_{j} some sets of sparse matrices, solve:

$$
\min _{S^{(1)}, \ldots, S^{(J)}}\left\|A-\prod_{j=1}^{J} S^{(j)}\right\|_{F}^{2} \text { subject to: } S^{(j)} \in \mathcal{E}_{j}, \forall j \in\{1, \ldots, J\}
$$

A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given A and \mathcal{E}_{j} some sets of sparse matrices, solve:

$$
\min _{S^{(1)}, \ldots, S^{(J)}}\left\|A-\prod_{j=1}^{J} S^{(j)}\right\|_{F}^{2} \text { subject to: } S^{(j)} \in \mathcal{E}_{j}, \forall j \in\{1, \ldots, J\}
$$

- Example of sparsity patterns \mathcal{E}_{j} : set of matrices with at most k nonzero entries per row, per column or in total.
- Known to be NP-hard (covers sparse PCA, sparse dictionary learning) [Malik, NP-hardness and inapproximability of sparse PCA, IPL, 2017]
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]

A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given A and \mathcal{E}_{j} some sets of sparse matrices, solve:

$$
\min _{S^{(1)}, \ldots, S^{(J)}}\left\|A-\prod_{j=1}^{J} S^{(j)}\right\|_{F}^{2} \text { subject to: } S^{(j)} \in \mathcal{E}_{j}, \forall j \in\{1, \ldots, J\}
$$

- Example of sparsity patterns \mathcal{E}_{j} : set of matrices with at most k nonzero entries per row, per column or in total.
- Known to be NP-hard (covers sparse PCA, sparse dictionary learning) [Malik, NP-hardness and inapproximability of sparse PCA, IPL, 2017]
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]
\rightarrow A challenging problem, how to deal with it?

Our approach: from two to multiple factors

- Two factors matrix factorization: the simplest nontrivial case.

$$
\text { Given } A, \underset{X, Y}{\operatorname{minimize}}\left\|A-X Y^{\top}\right\|_{F}^{2} \text { subject to: } X, Y \text { sparse matrices }
$$

- Multiple factors matrix factorization: butterfly factorization.

Two sub-problems of two factors matrix factorization

$\underset{X, Y}{\operatorname{Minimize}}\left\|A-X Y^{\top}\right\|_{F}^{2} \quad$ subject to: X, Y sparse matrices

Two sub-problems of two factors matrix factorization

$\underset{X Y}{\text { Minimize }} \quad\left\|A-X Y^{\top}\right\|_{F}^{2} \quad$ subject to: X, Y sparse matrices

1) Support identification

Find two sets S_{X}, S_{Y} - the supports of two factors X, Y

Two sub-problems of two factors matrix factorization

Minimize $\left\|A-X Y^{\top}\right\|_{F}^{2}$ subject to: X, Y sparse matrices X, Y

1) Support identification

Find two sets S_{X}, S_{Y} - the supports of two factors X, Y

2) Optimize coefficients inside support

Minimize
$X \in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}$
Subject to:

$$
\begin{aligned}
& L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2} \\
& \operatorname{supp}(X) \subseteq S_{X} \\
& \operatorname{supp}(Y) \subseteq S_{Y}
\end{aligned}
$$

Two sub-problems of two factors matrix factorization

$\underset{X, Y}{\operatorname{Minimize}} \quad\left\|A-X Y^{\top}\right\|_{F}^{2} \quad$ subject to: X, Y sparse matrices

1) Support identification

Find two sets S_{X}, S_{Y} - the supports of two factors X, Y
2) Optimize coefficients inside support

$$
\begin{array}{ll}
\underset{X \in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}}{\text { Minimize }} & L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2} \\
\text { Subject to: } & \operatorname{supp}(X) \subseteq S_{X} \\
& \operatorname{supp}(Y) \subseteq S_{Y}
\end{array}
$$

\rightarrow Second problem: Fixed support matrix factorization (FSMF).

Examples of FSMF

FSMF covers:

- Low rank matrix decomposition
- LU decomposition

$$
A=
$$

\times

- Hierarchical \mathcal{H} matrices
\square inside support
- Butterfly factorization (multiple factors)

FSMF: further motivation

Understand the asymptotic behaviour of other existing heuristics:

- Supports asymptotically don't change
- Spurious local valley in the landscape of $L(X, Y)$: certain heuristic can lead to iterates diverging to infinity

Measure of the difference between two consecutive supports

Main contributions on FSMF

(1) Is the problem polynomially tractable?
\rightarrow We prove its NP-hardness.
(2) Does the problem have a solution?
\rightarrow We show an instance where optimal solutions do not exist.
(3) Are there easy instances?
\rightarrow We individuate a family of polynomially solvable instances and proposed an efficient algorithm.
(9) How well does gradient descent tackle the problem of FSMF? \rightarrow We study the properties of the landscape of the function $L(X, Y)=\left\|A-X Y^{\top}\right\|^{2}$ under the support constraints.

(1) Introduction

(2) NP-hardness
(3) Existence of optimal solutions
(4) A polynomial algorithm for easy instances
(5) Multiple factors matrix factorization
(6) Back to two factors: Optimization landscape

NP-hardness

Theorem (1)

Sparse matrix factorization is NP-hard even with fixed support

Proof.

Rank-one matrix completion with noise is reducible to FSMF.

- In line with recent results on matrix factorization:
- non-negative matrix factorization (NMF)
- weighted low rank
- matrix completion
[N. Gillis, F. Glineur, Low-rank matrix approximation with weights or missing data is NP-hard. SIAM JMAA, 2010]
[S. A. Vavasis, On the complexity of nonnegative matrix factorization, SIOPT, 2010]

(1) Introduction

(2) NP-hardness

(3) Existence of optimal solutions

4 A polynomial algorithm for easy instances
(5) Multiple factors matrix factorization
(6) Back to two factors: Optimization landscape

LU decomposition and non-closedness

$A=$

LU decomposition and non-closedness

- Fact: Any square matrix is the limit of a sequence of matrices having an LU decomposition.
- But there exist square matrices that do not have an exact LU decomposition.
[H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press]

LU decomposition and non-closedness

- Fact: Any square matrix is the limit of a sequence of matrices having an LU decomposition.
- But there exist square matrices that do not have an exact LU decomposition.
[H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press]
\longrightarrow The set of matrices having LU decomposition is not closed
\longrightarrow For certain support constraints $\left(S_{X}, S_{Y}\right)$ and matrices A, (FSMF) does not have an optimal solution.

LU decomposition and non-closedness

$A=$

- Fact: Any square matrix is the limit of a sequence of matrices having an LU decomposition.
- But there exist square matrices that do not have an exact LU decomposition.
[H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press]
\longrightarrow The set of matrices having LU decomposition is not closed
\longrightarrow For certain support constraints $\left(S_{X}, S_{Y}\right)$ and matrices A, (FSMF) does not have an optimal solution.
Question: Given $\left(S_{X}, S_{Y}\right)$, do their FSMF instances always have optimal solutions? \rightarrow This problem is decidable (not known to be tractable yet).

(1) Introduction

(2) NP-hardness

(3) Existence of optimal solutions
(4) A polynomial algorithm for easy instances
(5) Multiple factors matrix factorization
(6) Back to two factors: Optimization landscape

Polynomially solvable instances

Example (Unconstrained matrix factorization)

When there is no constraints on the support of X and Y :

$$
\underset{\in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}}{\operatorname{Minimize}} L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2}
$$

Polynomially solvable instances

Example (Unconstrained matrix factorization)

When there is no constraints on the support of X and Y :

$$
\underset{\in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}}{\operatorname{Minimize}} L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2}
$$

\rightarrow Solution: Use Singular Value Decomposition (SVD).

Polynomially solvable instances

Example (Unconstrained matrix factorization)

When there is no constraints on the support of X and Y :

$$
\underset{\in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}}{\operatorname{Minimize}} L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2}
$$

\rightarrow Solution: Use Singular Value Decomposition (SVD).
\rightarrow Question: Can Singular Value Decomposition (SVD) still work in the constrained case?

SVD as a greedy algorithm

1) Decompose the problem:

$$
A-X Y^{\top}=A-\sum_{i=1}^{r} x_{i} y_{i}^{\top}=A-\sum_{i=1}^{r} \underbrace{M_{i}}_{\text {rank-one }} \quad\left(M_{i}:=x_{i} y_{i}^{\top}\right)
$$

SVD as a greedy algorithm

1) Decompose the problem:

$$
A-X Y^{\top}=A-\sum_{i=1}^{r} x_{i} y_{i}^{\top}=A-\sum_{i=1}^{r} \underbrace{M_{i}}_{\text {rank-one }} \quad\left(M_{i}:=x_{i} y_{i}^{\top}\right)
$$

2) Finding the SVD:

$$
\begin{array}{ll}
\text { bestRankOneApprox }(A) & \rightarrow M_{1} \\
\text { bestRankOneApprox }\left(A-M_{1}\right) & \rightarrow M_{2}
\end{array}
$$

bestRankOneApprox $\left(A-M_{1} \ldots-M_{r-1}\right) \rightarrow M_{r}$

SVD as a greedy algorithm

1) Decompose the problem:

$$
A-X Y^{\top}=A-\sum_{i=1}^{r} x_{i} y_{i}^{\top}=A-\sum_{i=1}^{r} \underbrace{M_{i}}_{\text {rank-one }} \quad\left(M_{i}:=x_{i} y_{i}^{\top}\right)
$$

2) Finding the SVD:

$$
\begin{array}{ll}
\text { bestRankOneApprox }(A) & \rightarrow M_{1} \\
\text { bestRankOneApprox }\left(A-M_{1}\right) & \rightarrow M_{2}
\end{array}
$$

bestRankOneApprox $\left(A-M_{1} \ldots-M_{r-1}\right) \rightarrow M_{r}$
\rightarrow SVD is a greedy algorithm in disguise
Algorithm 1 Algorithm for unconstrained matrix factorization
1: for $i \in\{1, \ldots, r\}$ do
2: $\quad M_{i}:=$ best rank-one approximation of $A-\sum_{k=1}^{i-1} M_{k}$.
3: end for

SVD as a greedy algorithm: the constrained case

- How to generalize the greedy algorithm?

SVD as a greedy algorithm: the constrained case

- How to generalize the greedy algorithm?
- Decompose $X Y^{\top}$:

$$
X Y^{\top}=\sum_{i=1}^{r} x_{i} y_{i}^{\top}=\sum_{i=1}^{r} \underbrace{M_{i}}_{\text {rank-one }} \quad\left(M_{i}:=x_{i} y_{i}^{\top}\right)
$$

SVD as a greedy algorithm: the constrained case

- How to generalize the greedy algorithm?
- Decompose $X Y^{\top}$:

SVD as a greedy algorithm: the constrained case

- How to generalize the greedy algorithm?
- Decompose $X Y^{\top}$:

SVD as a greedy algorithm: the constrained case

- How to generalize the greedy algorithm?
- Decompose $X Y^{\top}$:

$X Y^{\top}=M_{1}+M_{2}+M_{3}$

- Finding optimal solution $(X, Y) \rightleftarrows$ Finding optimal the rank-one constrained supports.

Algorithm 2 Algorithm for fixed-support matrix factorization

1: for $i \in\{1, \ldots, r\}$ do
2: $\quad S_{i} \leftarrow i$-th rank-one support
3: $\quad M_{i}:=$ best rank-one approximation of $\left(A-\sum_{k=1}^{i-1} M_{k}\right) \odot S_{i}$
4: end for

Example:

$$
\begin{gathered}
A \\
\square \\
\square \\
\square
\end{gathered} \begin{array}{r}
M_{1} \\
\square \\
\hline
\end{array}
$$

Algorithm 2 Algorithm for fixed-support matrix factorization

1: for $i \in\{1, \ldots, r\}$ do
2: $\quad S_{i} \leftarrow i$-th rank-one support
3: $\quad M_{i}:=$ best rank-one approximation of $\left(A-\sum_{k=1}^{i-1} M_{k}\right) \odot S_{i}$
4: end for

Example:

Algorithm 2 Algorithm for fixed-support matrix factorization

1: for $i \in\{1, \ldots, r\}$ do
2: $\quad S_{i} \leftarrow i$-th rank-one support
3: $\quad M_{i}:=$ best rank-one approximation of $\left(A-\sum_{k=1}^{i-1} M_{k}\right) \odot S_{i}$
4: end for

Example:

Algorithm 2 Algorithm for fixed-support matrix factorization

1: for $i \in\{1, \ldots, r\}$ do
2: $\quad S_{i} \leftarrow i$-th rank-one support
3: $\quad M_{i}:=$ best rank-one approximation of $\left(A-\sum_{k=1}^{i-1} M_{k}\right) \odot S_{i}$
4: end for

Example:

Polynomial solvability characterized by rank-one supports

- The output of the greedy algorithm will always satisfy the constraints
- Is the output an optimal solution? Not always

```
Theorem (2)
If the rank-one supports are pairwise disjoint or identical, then the greedy algorithm gives an optimal solution.
```

For the same result with a weaker assumption:
[QT. Le, E. Riccietti, R. Gribonval, Spurious Valleys, NP-hardness, and Tractability of Sparse Matrix Factorization With Fixed Support, SIAM Journal of Matrix Analysis and Applications, In press, 2022.]

(1) Introduction

(2) NP-hardness
(3) Existence of optimal solutions
(4) A polynomial algorithm for easy instances
(5) Multiple factors matrix factorization
(6) Back to two factors: Optimization landscape

Multiple-factors cases: the butterfly factorization

A special case: the butterfly factorization

Approximate any matrix by a product of $J \geq 2$ butterfly factors
Let $A:=X{ }^{(4)} X^{(3)} X^{(2)} X^{(1)}$ such that:

- It is expressive: the composition of matrices with a butterfly structure can accurately approximate any given matrix
- In neural networks faster training and inference time without harming the performance
[T. Dao \& all. Kaleidoscope: An efficient, learnable representation for all structured linear maps, ICLR, 2020]
[B. Chen \& all. Pixelated butterfly: Simple and efficient sparse training for neural network models, PMLR, 2022]

Butterfly factorization: theoretical guarantees

Hierarchical approach:Use our algorithm to recover the partial factors: solve a sequence of two factors problems, if the supports are known

Left-to-right tree

Balanced tree

Butterfly factorization: theoretical guarantees

Hierarchical approach:Use our algorithm to recover the partial factors: solve a sequence of two factors problems, if the supports are known

Left-to-right tree

Balanced tree

Theorem (3)

If E^{*} is best error approximation of $A \in \mathbb{R}^{N \times N}$, the solution of the hierarchical algorithm yields a distance/error E such that:

- Any tree: $E \leq(N / 2-1) \times E^{*}$.
- Left-to-right (or right-to-left) tree: $E \leq N^{c} \times E^{*}$ where $c=\log _{4} 3<1$.

(1) Introduction

(2) NP-hardness
(3) Existence of optimal solutions
(4) A polynomial algorithm for easy instances
(5) Multiple factors matrix factorization
(6) Back to two factors: Optimization landscape

Study of the landscape of the loss function

$$
L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2}
$$

Has been studied for:

- linear and shallows neural networks
- matrix sensing, phase retrieval, matrix completion ...
[Q. Li, Z. Zhu, G. Tang, The non-convex geometry of low-rank matrix optimization, Information and Inference, 2018]
[Z. Zhu \& all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
[L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes, JMLR, 2019]

Study of the landscape of the loss function

$$
L(X, Y)=\left\|A-X Y^{\top}\right\|_{F}^{2}
$$

Has been studied for:

- linear and shallows neural networks
- matrix sensing, phase retrieval, matrix completion ...
[Q. Li, Z. Zhu, G. Tang, The non-convex geometry of low-rank matrix optimization, Information and Inference, 2018]
[Z. Zhu \& all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
[L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes, JMLR, 2019]

Never with support constraints!

Undesirable spurious objects

Example of undesirable spurious objects :

- Spurious local minima: local minima (but not global minima)
- Spurious local valleys: less known but equally troublesome
[L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes, JMLR, 2019]

Example of spurious local minimum and spurious local valley. Two undesirable objects: may make the convergence of iterative methods difficult

Landscape of full support matrix factorization

- With unconstrained (full support) matrix factorization:

$$
\operatorname{Minimize}_{\mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}} L(X, Y)=\left\|A-X Y^{\top}\right\|^{2}
$$

- The landscape of $L(X, Y)$ is benign:
- No spurious local minima. ${ }^{1}$
- No spurious local valleys ${ }^{2}$
${ }^{1}$ [Z. Zhu \& all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
2 [L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes, JMLR, 2019]

Landscape of full support matrix factorization

- With unconstrained (full support) matrix factorization:

$$
\operatorname{Minimize}_{\mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}} L(X, Y)=\left\|A-X Y^{\top}\right\|^{2}
$$

- The landscape of $L(X, Y)$ is benign:
- No spurious local minima. ${ }^{1}$
- No spurious local valleys ${ }^{2}$
\rightarrow Are there other instances similar to full support matrix factorization ?

[^0]
Landscape of $L(X, Y)$ under sparsity constraints

Reminder : Fixed support matrix factorization

$$
\begin{array}{ll}
\underset{X \in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}}{\operatorname{Minimize}} & L(X, Y)=\| A \\
\text { Subject to: } & \operatorname{supp}(X) \subseteq S_{X} \\
& \operatorname{supp}(Y) \subseteq S_{Y}
\end{array}
$$

Theorem (4)

If $\left(S_{X}, S_{Y}\right)$ satisfy the condition of polynomial solvability in Theorem (2), then for all A, the landscape of $L(X, Y)$ does not contain any spurious local minimum and spurious local valley.

Conclusions

Take home message

For Fixed support matrix factorization (FSMF), we have:

1) It is NP-hard to solve
2) Easy instances with effective direct algorithm exists, competitive with gradient descent.
3) Those easy instances have benign landscape
4) Multiple factors can be dealt with by a hierarchical approach.

On-going works/perspectives

- Study the closedness of the set of solutions to FSMF.
- Can we enlarge the family of tractable instances of FSMF?
- Can we improve the approximate factor in the case of butterfly factorization?

Available: an implementation of the algorithm in $\mathrm{C}++$ via Python and Matlab wrappers FA μ ST toolbox at https://faust.inria.fr/.

To know more:
T- Q.-T. Le, E. Riccietti, and R. Gribonval (2022), Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix Factorization With Fixed Support, arXiv preprint, arXiv:2112.00386.
R. L. Zheng, E. Riccietti, and R. Gribonval (2022), Efficient Identification of Butterfly Sparse Matrix Factorizations, arXiv preprint, arXiv:2110.01235.

T- Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval (2022), Fast learning of fast transforms, with guarantees, ICASSP 2022

Definition: spurious local valleys

Definition (Spurious local valley - Informal)

$S \in \mathbb{R}^{d}$ is a spurious local valley if for all $x \in S$, there does not exist any continuous path connecting x and a global minimum x^{*} without increasing the loss function f.

Numerical results: 2 factors

A the Hadamard matrix of size $2^{J} \times 2^{J}, J=10$, two different supports

Numerical results: J factors

Approximation of the DFT matrix by a product of $J=9$ butterfly factors.

Faster and more accurate in the noiseless setting

Also more robust in the noisy setting

[^0]: ${ }^{1}$ [Z. Zhu \& all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
 2 [L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes, JMLR, 2019]

